skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cruz-Cortés, Efrén"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A powerful tool for the analysis of nonrandomized observational studies has been the potential outcomes model. Utilization of this framework allows analysts to estimate average treatment effects. This article considers the situation in which high-dimensional covariates are present and revisits the standard assumptions made in causal inference. We show that by employing a flexible Gaussian process framework, the assumption of strict overlap leads to very restrictive assumptions about the distribution of covariates, results for which can be characterized using classical results from Gaussian random measures as well as reproducing kernel Hilbert space theory. In addition, we propose a strategy for data-adaptive causal effect estimation that does not rely on the strict overlap assumption. These findings reveal under a focused framework the stringency that accompanies the use of the treatment positivity assumption in high-dimensional settings. 
    more » « less